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External ± Internal Group Quotient Structure for the
Standard Model in Analogy to General Relativity
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In analogy to the class structure GL( R 4)/O(1, 3) for general relativity with a
local Lorentz group as stabilizer and a basic tetrad field for the parametrization ,
a corresponding class structure GL( C 2)/U(2) is investigated for the standard
model with a local hyperisospin group U(2). The lepton, quark, Higgs, and gauge
fields used in the standard model cannot be basic in a coset interpretation; they
may to be taken as first-order terms in a flat spacetime, particle-oriented expansion
of a basic field (as the analogue to the tetrad) and its products.

1. THE COSET STRUCTURE IN RELATIVITY

Usually, general relativity as the dynamics of a metric for a Lorentz

manifold is characterized with concepts from differential geometry. To
prepare a comparison of relativity and the standard model from a common

coset point of view, I present in this section the well-known (Utiyama,

1956) Lorentz group class structure of relativity in a more algebraically

oriented language.

Special relativity distinguishes a Lorentz group O(1, 3) with its causal
order-preserving orthochronous subgroup SO+(1, 3) as invariance group of

a symmetric2 pseudometric g with signature (1, 3) on a real 4-dimensional

vector space M > R 4 with spacetime translations (Minkowski space)

g: M Ú M ® R , sign g 5 (1, 3), g(v, w) 5 g(w, v)

O(1, 3) { L : M ® M Û G 5 g + ( L Ú L )

1 Max-Planck-Institut fuÈ r Physik and Astrophysik, Werner-Heisenberg-I nstitut fuÈ r Physik,
Munich, Germany; e-mail: saller@mppmu.mpg.de.

2 For a vector space V, the totally symmetric and antisymmetric tensor product subspaces are
denoted with V Ú V and V Ù V, resp., in the 2nd tensor power V ^ V, correspondingly higher
powers, e.g., V Ú V Ú V and V Ù V Ù V in V ^ V ^ V, etc.
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The inverse metric is used for the dual3 energy-momentum space M T

g 2 1: M T Ú M T ® R , g 2 1 5 g 2 1 + ( L Ú L ) 2 1T

on which the contragredient representation L 2 1T acts.

A Lorentz metric induces an isomorphism 4 between translations and
energy-momenta

g: M ® M T, v j g(v, ? ), g 5 gT

It defines5 a linear g-involution (Lorentz `conjugation’ ) f %
g

f g for all endomor-

phisms f : M ® M of the translations

g
M Ð ® M T

½ ½ , f g 5 g 2 1 + f T + g, f gg 5 ff g f T

¯ ¯
M Ð ® M T

g

for all v, x P M : g(v, f (w)) 5 g( f g(v), w).

The g-invariance Lorentz group is defined by g-unitarity6

L P O(1, 3) Û L g 5 L 2 1

The invariance Lorentz Lie algebra7 is g-antisymmetric and therefore as a

vector space isomorphic to the antisymmetric square of the translations

l P log O(1, 3) Û lg 5 2 l

R 16 > M ^ M T . log O(1, 3) > M Ù M > R 6

There is a manifold (symmetric space) GL( R 4)/O(1, 3) of Lorentz groups
in the general linear group of a real 4-dimensional vector space as illustrated

by the different invariance groups of the three metric matrices (Bourbaki,

1959; Finkelstein, 1996) in one reference basis of the translations

3 VT denotes the algebraic dual with the linear forms for the vector space V, f T: W T ® V T is
the dual (transposed) linear mapping for f : V ® W. For finite dimensions, the linear mappings
{ f : V ® W} are naturally isomorphic to the tensor product W ^ V T.

4 The sloppy notation g: M Ú M ® R and g: M ® M T with the same symbol g P M T Ú M T

should not lead to confusion.
5 All diagrams are commutative.
6 Any involutive gaa 5 g P G antiautomorphi sm (gh)a 5 haga of a group G defines the associated
unitary subgroup U(G, a) 5 {ga 5 g 2 1}. The inversion is the canonical antiautomorphi sm.
In the quotient G/U(G, a) the unitary group is the stabilizer (Vilenkin and Klimyk, 1991).

7 The Lie algebra (Bourbaki, 1989b; O’ Raifeartaigh, 1986) of a Lie group G is denoted by log
G, which recalls also log , lag , Lie algebra.
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g > 1
g00 g01 g02 g03

g01 g11 g12 g13

g02 g12 g22 g23

g03 g13 g23 g33 2
g 5 g

T

sign g 5 (1, 3)

, 1
1 0 0 0

0 2 1 0 0

0 0 2 1 0

0 0 0 2 1 2
(time-space bases)

(Sylvester)

,

1
0 0 0 1

0 2 1 0 0

0 0 2 1 0

1 0 0 0 2
(light-space bases)

(Witt)

, 1
0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0 2
(light bases)
(Finkelstein)

The manifold GL( R 1+s)/O(1, s) with s $ 1 space dimensions can be visualized
for s 5 1, 2, by all possible s-dimensional 2-component hyperbolas (hyperbo-

loids) in R 1+s.

After the Stern±Gerlach experiment leading to the introduction of the

spin operations with half integer SU(2)-quantum numbers, also spacetime

has to come with a local `half-integer ’ Lorentz structure SL( C 2). The tetrad
field, introduced by Weyl (1929) as the basic field for general relativity, maps

a real 4-dimensional differentiable spacetime manifold $, parametrized with

four real coordinates (x m )3
m 5 0 P R 4, into the real 10-dimensional manifold of

metrics. It associates a GL( R 4)/O(1, 3)-class representative to each space-

time point

h: $ ® GL( R 4), x j h(x)

It gives an isomorphism between the tangent space, definable by the deriva-

tions der #(x) 5 M (x) > R 4 of the differentiable functions at each spacetime

point x P $, and one reference translation space M (0) > R 4 with metric g(0),

h(x): M (x) ® M (0), h 2 1T(x): M T(x) ® M T(0)

Therewith all multilinear8 structures of M (0) and M (x) are bijectively related

to each other, e.g., the metric and its invariance group,

g(x) L (x)
( M Ú M )(x) Ð ® R M (x) Ð ® M (x)

h(x) Ú h(x) idR , h(x) h(x)½ ½ ½ ½
¯ ¯ ¯ ¯

( M Ú M )(0) Ð ® R M (0) Ð ® M (0)
g(0) L (0)

8 ( M ^ M T)(x) 5 M (x) ^ M T(x) or ( M Ú M )T(x) 5 M T(x) Ú M T(x) etc. are vector subspaces
of the local tensor algebra over ( M % M T)(x) 5 M (x) % M T(x).
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g(x) 5 g(0) + (h Ú h)(x), L (x) 5 h 2 1(x) + L (0) + h(x)

With dual ( M (x), M T(x)) bases, e.g., { - m , dx m }, one obtains as tensor

components

h(x) , h j
m (x) , hT(x), eh 2 1(x) , h m

j (x) 5
e m n r l e jiklh

i
n h

k
r h

l
l

3! det h
(x) , h 2 1T(x)

g(0) , h jk, g 2 1(0) , h jk

g(x) , g m n (x) 5 h jkh
j
m hk

n (x), g 2 1(x) , g m n (x)

With the Lorentz metric-induced isomorphisms between tangent space and

its dual, those relations can be written in the form

g(x)
M (x) Ð ® M T(x)

g(x) h 2 1T(x)½ ½
¯ ¯

M (0) Ð ® M T(0)
g(0)

g(0) + h(x) , h jkh
k
m (x) 5 hj m (x), g 2 1(0) + h 2 2T(x) , h jkh

m
k (x) 5 h m j(x)

Because of the invariance of the local metric under the local Lorentz
transformations

g(x) 5 g(x) + ( L Ú L )(x) 5 g(0) + (h Ú h)(x) + ( L Ú L )(x)

the tetrad field as coset representative is determined up to local Lorentz

transformations

L (x) P O(1, 3)(x): h(x) j h(x) + L (x)

This Lorentz gauge freedom of the tetrad is made compatible with the

translations (local derivations) by using O(1, 3)-gauge field 2(x) as a linear

mapping from the translations into the Lorentz Lie algebra log O(1, 3)(0) of

the reference space

2(x): M (x) ® ( M ^ M T )(0), 2(x) , O i
j m (x)

Because of the Lorentz invariance of the metric, a gauge field is g(0)-

antisymmetric

O(x): M (x) ® ( M Ù M )(0)

O(x) 5 g 2 1(0) + 2(x) , h ikOi
k m (x) 5 O ij

m (x) 5 2 O ji
m (x)

General relativity uses no fundamental O(1, 3)-gauge field, but a `composite’
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one: The local Lorentz freedom for the tetrad defines the tetrad-induced

gauge field 2(x) 5 2(h)(x) by using a covariantly constant tetrad

Dh(x): M (x) ^ M (x) ® M (0)

Dh(h) 5 - h(x) 2 h + G (x) 2 2 + h(x) 5 0

D m hi
n (x) 5 - m hi

n (x) 2 hi
l G l

m n (x) 2 Oi
m jh

j
n (x) 5 0

with a manifold connection G (x). A covariantly constant tetrad leads with

g(x) 5 g(0) + (h Ú h)(x) to a covariantly constant metric

Dg(x): M (x) ^ ( M Ú M )(x) ® R

Dh(x) 5 0 Þ Dg(x) 5 0 5 D m g n r (x) 5 - m g n r (x) 2 G l
m n g l r (x) 2 G l

m r g n l (x)

If the log GL( R 4)-valued connection is assumed as g(x)-symmetric (torsion-

free manifold), it is expressible by the tetrad and its derivative

if G l
m n (x) 5 G l

n m (x) Þ G l
m n (x) 5

g l r

2
( - m g n r 1 - n g m r 2 - r g m n )(x)

Therewith, the tetrad induced O(1, 3)-gauge field is determined

2(x) 5 h 2 1 + ( - h 2 h + G )(x)

Oij
m (x) 5 h n i( - m h j

n 2 h
j
l G l

m n )(x)

5 1±2 h l ih n j(h m k - [ l h
k
n ] 1 h l k - [ m hk

n ] 2 h n k - [ m hk
l ])(x)

The tetrad induced O(1, 3)-curvature field R(x) and 5(x) relates the

antisymmetric square of the tangent space and the local Lie algebra log

O(1, 3)(x) > ( M Ù M )(x) to the antisymmetric square of the reference space

and the reference Lie algebra

R(x): ( M Ù M )(x) ® ( M Ù M )(0)

R(x) , Rij
m n (x) 5 - [ m Oij

n ](x) 2 O ik
[ m h klO

lj
n ](x)

5(x): ( M ^ M T)(x) ® ( M ^ M T )(0)

5(x) 5 g(0) + R + g 2 1(x) , R j l
k m (x) 5 h kiR

ij
m n g

n l (x)

With the tetrad isomorphisms, this can be related to a transformation of the

reference Lorentz Lie algebra

R + (h Ù h) 2 1(x): ( M Ù M )(0) ® ( M Ù M )(0)

R + (h Ù h) 2 1(x) , Rij
m n h

m
k h n

l (x)

5 + (h ^ h 2 1)(x): ( M ^ M T )(0) ® ( M ^ M T )(0)

5 + (h ^ h 2 1)(x) , Rij
m n h

m
k h n

l (x)
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The coupling of the curvature 5 to the tetrad h ^ h 2 1 determines the

familiar second-order derivative action

A(h, - h) 5 # det h(x) d 4x tr 5 + (h ^ h 2 1)(x)

tr 5 + (h ^ h 2 1)(x) 5 Rij
m n h

m
i h n

j (x) 5 R j l
k m h m

j hk
l (x) 5 tr R + (h Ù h) 2 1(x)

The integration over the manifold uses the invariant volume element

`
4

M T(x) ® `
4

M T(0), d 4x j
e jiklh

j
m hi

n h
k
r h

l
l

4!
(x) dx m Ù dx n Ù dx r Ù dx l

2. THE LINEAR GROUPS OF RELATIVITY

A Lorentz group O(1, 3) is a semidirect product
-

3 of a reflection group9

I (2) 5 { 6 1}, e.g., a time reflection, and its special normal subgroup

SO(1, 3) which by itself is the direct product 3 of the spacetime translation
reflection group { 6 14} > I (2) and its orthochronous group SO+(1, 3),

O(1, 3) > I (2)
-

3 SO(1, 3) > I (2)
-

3 [ I (2) 3 SO+(1, 3)]

The general linear group g P GL( R 4) contains via the modulus of the fourth

root of the determinant ) ! 4 det g ) the abelian dilatation group D(14) 5 14 exp

R as a direct factor with the other factor UL( R 4) (unimodular linear group)

containing the elements with ) det g ) 5 1,

GL( R 4) 5 D(14) 3 UL( R 4)

UL( R 4) > I (2)
-

3 SL( R 4) > I (2)
-

3 [ I (2) 3 SL0( R 4)]

SO+(1, 3) 5 SO0(1, 3) and SL0( R 4) are the connection components of the

group unit in O(1, 3) and UL( R 4), respectively, and the adjoint groups10 of

SO(1, 3) and SL( R 4), respectively.
The tetrad manifold is the product of the dilatation group and the quotient

of the connection components of the units

GL( R 4)/O(1, 3) > D(1) 3 SL0( R 4)/SO+(1, 3)

The real nine-dimensional manifold SL0( R 4)/SO+(1, 3) is the manifold of
nontrivial natural order structures v s2 0 on the translations M > R 4 as

induced by the natural order of the scalars R : A natural translation order s2

9 I (n) 5 {z P C ) zn 5 1} designates the nth cyclotomic group.
10 The adjoint group of a group G consists of its classes G/centr G with respect to the centrum.
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has to be characterized by R -multilinear forms, the even-linear symmetric

forms characterize the pairs ( s2 , a2 ), consisting of an order and its referse.

Only the signature (1, 3)-bilinear forms g define nontrivial order pairs: v s2
0 or v a2 0 Û g(v, v) $ 0.

The orbit {h 2 1(x) + O(1, 3)(0) + h(x) ) h(x) P GL( R 4)} of a reference

Lorentz group by inner automorphisms with GL( R 4)-operations does not fill

the full group GL( R 4) because of the nontrivial centralizer, isomorphic to

GL( R ) 5 D(1) 3 I (2).

The equivalence classes irrep SO+(1, 3) of the irreducible real finite-
dimensional representations of an orthochronous Lorentz group with its sim-

ple rank-2 Lie algebra are built by two fundamental representations, the real

4-dimensional Minkowski representation [1 ) 1] (cyclic representation11), self-

dual with the symmetric signature (1, 3) Lorentz metric g, and the real 6-

dimensional adjoint representation [2 ) 0] % [0 ) 2] > [1 ) 1] Ù [1 ) 1], self-dual

with two symmetric bilinear forms, the definite metric g Ù g and the signature
(3, 3)-Killing metric12 e (4). Correspondingly, there are two types of real,

irreducible 13 finite-dimensional representations, those with equal integer or

half-integer `left’ and `right’ spin numbers JL 5 JR 5 J 5 0, 1±2 , 1, . . . , and

those with different `left’ and `right’ spin numbers JL Þ JR, but integer sum:

irrep SO+(1, 3)

5 {[2J ) 2J] ) 2j 5 0, 1, . . .}

ø {[2JL ) 2JR] % [2JR ) 2JL] ) 2JL,R 5 0, 1, . . . , JL

Þ JR, JL 1 JR 5 0, 1, . . .}

The dimensions for the representation spaces are

JL 5 JR 5 J: dim R [2J ) 2J] 5 (2J 1 1)2

JR Þ JR: dim R ([2JL ) 2JR] % [2JR ) 2JL]) 5 2(2JL 1 1)(2JR 1 1)

All representations are self-dual, i.e., they have an SO+(1, 3)-invariant bilinear
form, symmetric as tensor product of the Lorentz metric.

The equivalence classes of the irreducible, real, finite-dimensional repre-

sentations (Fulton and Harris, 1991; Helgason, 1978) of the special group

SL0( R 4), locally isomorphic to SO(3, 3), with a simple rank-3 Lie algebra,

are built by three fundamental representations, the real 4-dimensional cyclic

representations [1, 0, 0] and [0, 0, 1], dual to each other, and the real 6-

11 A cyclic representation generates by its tensor products all representations (up to equivalence).
12 The R 4-volume element is a symmetric bilinear form e (4) , e ijkl 5 e klij with signature (3,

3) on R 4 Ù R 4 > R 6.
13 The representations [2JL ) 2JR] % [2JR ) 2JL] are decomposable as complex representations.
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dimensional representation [0, 1 0] > [1, 0, 0] Ù [1, 0, 0], self-dual with the

volume form e (4):

irrep SL0( R 4) 5 {[n1, n2, n3] ) n1,2,3 5 0, 1, . . .}

dim R [n1, n2, n3]

5
(n1 1 1)(n3 1 1)(n2 1 1)(n1 1 N2 1 2)(n3 1 n2 1 2)(n1 1 n3 1 n2 1 3)

2! 3!

The three natural numbers in [n1, n2, n3] are the linear combination coefficients

of the dominant representation weight from the three fundamental weights.

The real 15-dimensional adjoint representation is [1, 0, 1].

The decomposition of the SL0( R 4)-representations into SO+(1, 3)-repre-
sentations is given for the simplest cases, relevant in relativity, in Table I.

The tangent space of the tetrad (metric) manifold is the quotient of the

corresponding Lie algebras

log GL( R 4)/log O(1, 3) > M Ú M > R 10

It carries the irreducible representations [2, 0, 0] of SL0( R 4). The curvature

R m n k l (x) 5 R ij
m n hi k hj l (x) with its familiar (anti)symmetry properties as traceless

element of ( M Ù M )(x) Ú ( M Ù M )(x) transforms with the 20-dimensional

representation [0, 2, 0], the symmetric Ricci tensor R m l (x) 5 R m n k l b
n k (x) with

the 10-dimensional [2, 0, 0].

In general, a representation c of a group quotient G/U will be defined

as a mapping from the classes c : G/U ® VU ^ V T
G into the linear mappings

c gU: VG ® VU of two vector spaces with linear representations of the groups

involved, G ® GL(VG) and U ® GL(VU). If the vector spaces are isomorphic,

VG > VU > V, the mappings c gU P GL(V ) are assumed to be isomorphisms.
The tetrad h(x), h 2 1(x) P GL( R 4) and the curvature 5(x) P GL( R 6) as

representations of the quotient GL( R 4)/O(1, 3) relate to each other as vector

spaces with the fundamental representations of the orthogonal and special

group. In general, the (n 2 1) fundamental SL0( R n)-representations act on

Table I

[1, 0, 0] [2, 0, 0]
SL0( R

4) [0, 1, 0] [0, 2, 0] [1, 0, 1]
[0, 0, 1] [0, 0, 2]

6 5 1 42 2 10 5 1 4 1 1

2 2 20 5 1 6 1 1

2 2 2 1 15 5 42 2 1 5 1 62 2Dimension 4

[1 ) 1] [0 ) 0] % [2 ) 2] % [0 ) 0] % [2 ) 2] %
SO+(1, 30 [2 ) 0] % [0 ) 2] [0 ) 0] % [2 ) 2]

[4 ) 0] % [0 ) 4] [2 ) 0] % [0 ) 2]
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the (n 2 1) Grassmann powers Ù N R n for N 5 1, . . . , n 2 1. Therefore the

reference Grassmann algebra14 Ù M (0) > R 16 over the translations with the

powers Ù N M (0) , R (4N) as direct summands and the isomorphic local partners
Ù M (x) are related to each other by the fields in relativity as shown in Table

II. The Grassmann degree N is the D(1)-grading, called by Weyl (1973) the

`weight of a tensor density.’

3. THE SCALES FOR RELATIVITY

The rank of the symmetric space GL( R 4)/O(1, 3) (tetrad or metric

manifold) will be defined as the difference 4 2 2 of the ranks for the

`nominator ’ and `denominator’ Lie algebra

rank R GL( R 4)/O(1, 3) 5 2, rank R D(1) 5 1

The rank gives the number of invariants for the representations of the mani-
fold: one abelian invariant for D(1) and one simple invariant for the quotient

SL0( R 4)/SO+(1, 3). Those invariants can be used as overall normalization

and relative space-time normalization, respectively, or as fundamental intrin-

sic length scale l (Newton’ s constant) and fundamental velocity scale c,

g(x) >
l2

c 1 1/c 0

0 2 c13 2 5 h(l, c) 1 1 0

0 2 13 2 hT(l, c)

h(l, c) 5 1 l/c 0

0 l13 2 with l, c . 0

The abelian invariant is given by the determinant of the tetrad h(l, c) or, in

the Lie algebra, by the trace; the simple invariant arises from the `double

trace’ as familiar from the Killing form and the quadratic Casimir element
for semisimple Lie algebras,

Table II. Lorentz and Special Linear Representation Properties of the Relativity Fields

N Grassmann power Ù n M Field SO+(1, 3) SL0( R
4)

0 R id R , 1 [0 i 0] [0, 0, 0]

1 M > R 4 h(x) , h j
m (x) [1 i 1] [1, 0, 0]

2 M Ù M > R 6 5(x) , R ij
m n (x) [2 i 0] % [0 i 2] [0, 1, 0]

3 M Ù M Ù M > R 4 h 2 1(x) , h m
j (x) [1 i 1] [0, 0, 1]

4 R det h(x) [0 i 0] [0, 0, 0]

14 ` M is isomorphic as vector space, not as associative algebra, to the Clifford algebra over M .
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h(l, c) 5 exp l(l, c), 5
det h(l, c) 5 exp tr l(l, c) 5 l4/c

exp ! 4 tr l(l, c) + l(l, c) 2 (tr l(l, c))2

3
5

1

c

The flat spacetime expansion for general relativity uses the 10-dimen-

sional tangent space of the tetrad manifold. It expands the GL( R 4)-tetrad

with its Lie algebra around a reference Lorentz group O(1, 3). A tetrad from

the unit connection component GL0( R 4) 5 D(14) 3 SL0( R 4) can be written

with an exponent

h(x) 5 exp l(x), l(x) P log GL( R 4)

Because of the local invariance, the Lie algebra element l(x) is determined

up to gauge translations l(x) 1 log O(1, 3)(x). The flat spacetime expansion

is characterized by

h(x) 5 14 1 l(x) 1 . . . , h j
m (x) 5 d k

m [ d j
k 1 l j

k(x) 1 . . .]

4. THE OPERATION GROUPS OF THE STANDARD MODEL

Before trying an interpretation with coset structures also for the standard

model of the electroweak and strong interactions, its relevant operational

symmetries will be summarized.

The standard model implements the electroweak and strong interactions

as gauge structures, relating the spacetime translations to the internal transfor-
mation groups

hypercharge: U(1), isospin: SU(2), color: SU(3)

In the lepton, quark, Higgs, and gauge fields, the internal groups meet with

the external transformation groups15

Lorentz group: SL( C 2), chirality: U(1)

The fundamental standard model fields transform internally with irreduc-

ible representations [ y], [2T ], and [C1, C2] for hypercharge, isospin, and
colour group, respectively, and, externally, with [c] and [2JL ) 2JR] for chirality

and Lorentz group, respectively, as given by the quantum numbers in Table

15 The unspecified name `Lorentz group’ is used for the locally isomorphic real Lie groups
O(1, 3), SO(1, 3) (special), SO+(1, 3) (orthochronous) , and SL( C 2) (covering). The complex
finite-dimensional representations of the real dimension 6, rank 2 simple Lie algebra log
SL( C 2) are denoted with two natural numbers [2JL ) 2JR] for the linear combination of its
dominant weight from the two fundamental weights for the Weyl representations.
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III. With respect to the Lorentz group, [0 ) 0] designates scalar fields, [1 ) 0]

and [0 ) 1] are left- and right-handed Weyl spinor fields, respectively, and

[1 ) 1] designates vector fields. The external and internal multiplicity (singlet,
doublet, triplet, quartet, octet, etc.) of the Lorentz group, isospin, and color

representations can be computed from the natural numbers 2JL,R, 2T, C1,2:

dim D[2JL ) 2JR] 5 (2JL 1 1)(2JR 1 1), 2JL,R 5 0, 1, . . .

dim D[2T] 5 2T 1 1, 2T 5 0, 1, . . .

dim D[C1, C2] 5 C1,2 5 0, 1, . . .
(C1 1 1)(C2 1 1)(C1 1 C2 1 2)

2
,

Fields and antifields have reflected quantum numbers

C with [ y i 2T; C1, C2] + [c i 2JL ) 2JR]

C * with [ 2 y i 2T; C2, C1] + [ 2 c i 2JR ) 2JL]

The chirality property [c] will be discussed below in more detail.

The gauge interaction of the fermion fields is effected by the local Lie

algebra invariants16 (current-gauge field products)

g1J(1)A 1 g2J(2)B 1 g3J(3)G

for U(1): J(1) 5 1±6 [q*16q 2 2d*13d 2 3l*12l 1 4u*13u 2 6e*e]

for SU(2): J(2) 5 1±2 [q*
-
t ^ 13q 1 l*

-
t l]

for SU(3): J(3) 5 1±2 [q*12 ^
-

l q 1 d*
-

l d 1 u*
-

l u]

Table III. Quantum Numbers of the Standard Model Fields

Symbol U(1) SU(2) SU(3) U(1) SL( C 2)

Field C [ y] [2T] [C1, C2] [c] [2JL ) 2JR]

Left lepton l 2 1±2 [1] [0, 0] 1±2 [1 ) 0]

Right lepton e 2 1 [0] [0, 0] 3±2 [0 ) 1]

Left quark q 1±
6

[1] [1, 0] 2 1±
2

[1 ) 0]

Right down quark d 2 1±3 [0] [1, 0] 1±2 [0 ) 1]

Right up quark u 2±
3

[0] [1, 0] 2 3±
2

[0 ) 1]

Higgs H 2 1±2 [1] [0, 0] 1 [0 ) 0]

Hypercharge gauge A 0 [0] [0, 0] 0 [1 ) 1]

Isospin gauge B 0 [2] [0, 0] 0 [1 ) 1]

Color gauge G 0 [0] [1, 1] 0 [1 ) 1]

16 For a Lie algebra representation $: L ® V ^ V T in the endomorphism algebra of a vector
space (L and V finite dimensional) the tensor $ P V ^ V T ^ LT is the associated invariant.
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involving as a basis, e.g., the three Pauli and eight Gell-Mann matrices
-
t 5

( t a)3
a 5 1 and

-
l 5 ( l c)8

c 5 1, respectively. The coupling constants g2
1,2,3 . 0 are

the normalizations of the corresponding Lie algebras (Saller, 1998).
At face value, the relevant group seems to be a product of five unrelated

direct factors

U(1) 3 SU(2) 3 SU(3) 3 U(1) 3 SL( C 2)p p
internal external

A closer look, however, suggests a common origin for all those groups: The
three internal factors are related to each other as well as the two external

ones and, what is highly interesting, there exists also an internal±external

correlation.

In general, a standard model field does not represent faithfully all opera-

tions. If a group G is represented, the faithfully represented group is the

quotient G/N, consisting of classes with respect to the trivially represented
invariant subgroup N # G. To find those groups in the standard model, one

has to consider the four central correlations of its operation group (Hucks,

1991; Saller, 1998).

The two internal correlations connect hypercharge with both isospin and

color: The colorless fields l, e, H, A, and B show a (half)integer hypercharge±

(half)integer isospin correlation. The isospin-less fields u, d, and G show an
analogous I (3) correlation. Therefore the faithfully represented groups arise

from the full unitary groups U(n) for n 5 2, 3. U(n) is a product, not direct,

of two normal subgroups with I (n) as discrete intersection.17 Its quotient

groups are the phase group U(1n) 5 1n exp i R and the adjoint group SU(n)/

I (n) (Table IV),

U(n) 5 U(1n) + SU(n)

U(1n) ù SU(n) 5 centr SU(n) > I (n) J Þ U(n) > U(1) 3 SU(n)

I(n)

Furthermore , the internal color and isospin properties of the left-handed quark

field q show that the internal faithfully represented group, defined in U(6),

Table IV. Internal Operation Groups from U(n), n 5 2, 3

Normal subgroup U(1) SU(n)

Quotient group SU(n)/ I (n) U(1)

17 The somewhat ambiguous notation G1 3 G2/H denotes a common normal subgroup H #
G1 ù G2 in contrast to, e.g., G1 3 G2/H.
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Table V. Internal Operation Groups from U(2 3 3)

Normal subgroup U(1) SU(2) SU(3)

Quotient group SU(3) 3 SU(3)/ I (3) U(3) U(2)

Normal subgroup U(2) U(3) SU(2) 3 SU(3)

Quotient group SU(3)/ I (3) SO(3) U(1)

is a product of three normal subgroups with an I (2) 3 I (3) > I (6) correlation

(Table V),

U(2 3 3) 5 U(16) + [SU(2) ^ 13 3 12 ^ SU(3)]

U(16) ù [SU(2) ^ 13] > I (2)

U(16) ù [q2 ^ SU(3)] > I (3) J Þ U(2 3 3) > U(1) 3 SU(2) 3 SU(3)

I(2) 3 I(3)

The external correlation is seen in the fact that half-integer spin JL 1
JR comes with half-integer chirality number c and integer JL 1 JR with integer
c. Therefore, the faithfully represented external group is the unimodular group

UL(2) 5 {g P GL( C 2) ) ) det g ) 5 1} (phase Lorentz group). Its quotient

groups are the phase group (chirality group) and the orthochronous Lorentz

group as adjoint group (Table VI),

U(1) 3 SL( D2)
Þ UL(2) >UL(2) 5 U(12) + SL( C 2)

U(12) ù SL( C 2) 5 centr SL( C 2) > I (2) J I(2)

Þ H UL(2)/SL( C 2) > U(1)/ I (2) > U(1)

UL(2)/U(12) > SL( C 2)/ I (2) > SO+(1, 3)

Before discussing the internal±external correlation, the standard model

fields will be arranged with respect to the external and internal quotient

groups of UL(2) and U(2 3 3), respectively, that they represent faithfully

(Table VII). Some entries are missing: First of all, there are no colored

Lorentz scalar fields analogous to the Higgs isodoublet. Second, a field of
the standard model has nontrivial hypercharge if and only if it has nontrivial

chirality. The chirality U(1)ext number c is determined from the Yukawa

interaction

( m ee*1 1 m uq*u 1 m dd*q)H 1 h.c. with Yukawa couplings m e,u,d P R

With an integer cH for the Higgs fields, the chiral numbers for the quark

Table VI. External Operation Groups from UL(2)

Normal subgroup U(1) SL( C 2)

Quotient group SO+(1, 3) U(1)
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Table VII. Faithfully Represented Homogeneous Groups in the Standard Model

UL(2) U(1)ext SO+(1, 3)

U(2) l H 3
U(1)int e Ð 3
U(2 3 3) q Ð 3
U(3) d, u Ð 3

SO(3) 3 3 B

{1} 3 3 A

SU(3)/ I (3) 3 3 G

fields q, d, u and for the lepton fields l, e are given up to integers zq and zi

in Table VIII.

The choice of the three integers cH, zl, zq is not obvious. zl and zq will

be determined by opposite chirality and hypercharge for the lepton isodoublet

field l and opposite chirality and threefold hypercharge for the quark isodou-
blet field q,

cl 5 2 yl, cq 5 2 3yq Þ zl, zq 5 0

The chirality cH for the Higgs field is determined in such a way that the

hypercharge±chirality combination (fermion number) f 5 2 c 2 2cH y, trivial

for the Higgs field, gives a ratio 1:3 for quark and lepton fields

fl 5 3fq Û cl 1 2cH yl 5 3(cq 1 2cH yq) Þ cH 5 1

These conditions will be discussed in Sections 5 and 6.

Both U(1)’ s, chirality and hypercharge, have to be represented in the

only one phase group of a field. The combination of chirality and hypercharge

with a trivial value for the Higgs field defines a fermion number group U(1)
which correlates external and internal U(1),

Table VIII. Hypercharge, Chirality, and Fermion Numbers for the Standard Model Fields

U(1)int U(1)ext U(1)ext with U(1)ferm

y c ch 5 1, zq,l 5 0 f 5 2 c 2 2y

l 2 1±2
1±2 1 zl

1±2
1±2

e 2 1 1±2 1 zl 1 cH
3±2

1±2
q 1±

6
2 1±

2
1 zq 2 1±

2
1±
6

d 2 1±3 2 1±2 1 zq 1 cH
1±2

1±6
u 2±

3
2 1±

2
1 zq 2 cH 2 3±

2
1±
6

H 2 1±2 cH 1 0

A, B, G 0 0 0 0
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U(1)ext , UL(2)

U(1)int , U(2 3 3) J , U(1)ferm >
U(1)ext 3 U(1)int

U(1)

f 5 2 c 2 2y 5 5
1±2 for lepton fields l, e
1±6 for quark fields q, d, u

0 for boson fields H, A, B, G

Summarizing the operation groups of the standard model: The external±

internal homogeneous symmetry group, faithfully represented with the stan-
dard model fields, is a product of five normal subgroups with a fourfold

central correlation

U(2 3 3) 3 UL(2) U(1) 3 SU(2) 3 SU(3) 3 U(1) 3 SL( D2)>
U(1) L(2) 3 L(3) 3 U(1) 3 L(2)

5. SYMMETRIES FOR PARTICLES

One has to make a clear distinction between the operation group (symme-

try) for fields and the operation group (symmetry) for particles (Wigner, 1939).

Going from the standard model fields for the description of the dynamics to

the in- and out-fields for the description of particles, the homogeneous real
18-dimensional Lie group U(2 3 3) 3 UL(2)/U(1) with both external and

internal operations is dramatically reduced. With color confinement and

ground-state frozen electroweak symmetries there remains from the 12-

dimensional U(2 3 3) only a 1-dimensional abelian U(1) symmetry, faithfully

represented by particles with nontrivial electromagnetic charge or fermion

number, e.g., by the electron or the neutron. The establishment of a laboratory
distinguishes a reference rest system and reduces the 6-dimensional external

Lorentz group operations SL( C 2) for fields in the case of massive half-integer

and integer-spin particles to a faithfully represented 3-dimensional group

SU(2) and SU(2)/ I (2) > SO(3), respectively. Massless particles represent

faithfully only a 1-dimensional polarization subgroup SO(2) > U(1) , SU(2),

which, possibly reflecting the external±internal U(1) correlation, are all
chargeless, e.g., the photon and the neutrinos (Table IX).

6. THE COSET STRUCTURE IN THE STANDARD MODEL

After the coset formulation for relativity in Sections 1±3 and the exposi-
tion of the standard model operation groups in Section 4, I come to the main

purpose of this paper.

An attempt to characterize the standard model for the electroweak and

strong interactions with coset structures and symmetric spaces in analogy to
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Table IX. Particles from Standard Fields

U(1) , SU(2) U(1) U(1)

D(1) spin polarization em

Particle Symbol mass direction (helicity) charge

Massive electron e 7 me 1 1±2 , 2 1±2 Ð 7 1

Electron neutrino n e, n e 0 Ð 6 1 0

Charged weak boson W 6 mW 1 1, 0, 2 1 Ð 6 1

Neutral weak boson Z mZ 1 1, 0, 2 1 Ð 0

Photon g 0 Ð 6 1 0

relativitry encounters characteristic differences: Relativity is a real theory

with orthogonal groups and bilinear forms (metrics), whereas the standard
model and quantum theory come in a complex formulation with unitary

groups and sesquilinear forms (scalar products, probability amplitudes). The

local operation Lorentz group O(1, 3) for relativity has no true normal Lie

subgroup, whereas the internal standard model operation group U(2 3 3)

has the normal Lie subgroups U(1) (hypercharge) , SU(2) (isospin), and SU(3)

(color). The main apparent obstacle for a symmetric space interpretation for
the standard model is the color group SU(3): It prevents a naive embedding

of the internal group U(2 3 3) as subgroup of the external phase Lorentz

group UL(2), as compared to the tetrad manifold quotient structure GL( R 4)/

O(1, 3). Therefore, Weinberg’ s (1967) `model of leptons’ is considered first:

There, the colorless group U(2) 3 UL(2)/U(1) with hyperisospin and phase
Lorentz group is represented by the lepton fields l, e, the hypercharge and

isospin gauge fields A, B, and the Higgs field H.

A group U(2) (hyperisospin) is the invariance group of a definite scalar

product d for a complex 2-dimensional vector space U > C 2

d: U 3 U ® C , d(v, v) . 0 Û v Þ 0, d(v, w) 5 d(w, v)

U(2) { u: U ® U Û d 5 d + (u 3 u)

A scalar product d for quantum theory is the analogue to a signature (1, 3)

metric g of the real translation vector space M > R 4 in relativity with

O(1, 3) invariance (Section 1).

A scalar product defines a conjugation f ®
d

f * for all linear mappings

f : U ® U

for all v, w P U : d(v, f (w)) 5 d( f *(v), w), f ** 5 f

with u P U(2) Û u* 5 u 2 1 and l P log U(2) Û l 5 2 l*.

Antilinear structures like a sesquilinear complex scalar product d are

more complicated than linear ones. In general for a complex linear space



External ± Internal Group Quotient Structure for Standard Model 2349

U > C n, one has to consider the complex quartet18 of associated vector spaces

U , U T, U *, U *T > C n, consisting of space, dual space, antispace, and dual

antispace, respectively (Bourbaki, 1989a; Haft, 1997), to take care of the
conjugations in a basic independent form. The canonical C -conjugation

defines canonical antilinear isomorphisms between antispaces U > U * and

U * > U *T. With an additional vector space conjugation, i.e., an antilinear

isomorphisms between duals, d: U ® U T, v j d(v, ? ), one obtains linear

isomorphism U > U *T and U T > U *.

There is a real 4-dimensional manifold (symmetric space) GL( C 2)/U(2)
of positive unitary groups in the general linear group, considered as a real

8-dimensional Lie group. With a reference basis, this manifold is parametriza-

ble by all positive 2 3 2 matrices for the scalar products

d j 1 d0 1 d3 d1 2 id2

d1 1 id2 d0 2 d3 2
s 0 Û H d 5 d * and tr d, det d . 0

i.e., dj P R and d0, d 2 5 d 2
0 2

-
d 2 . 0

In analogy to a 5 e ( a ) a for a positive number a . 0, the positivity of the

matrix d is expressible with its signature e (d ) 5 e (d0) q (d 2),

d s 0 Û d Þ 0 and d 5 e (d0) q (d 2)d

Besides the analogies, there are important differences between the real-

orthogonal quotient structure of relativity and the complex-compact one

proposed for the standard model: In contrast to the different dimensions of
the spacetime and tetrad manifold in relativity for M > R 4,

4 5 1 1 s 5 dim R $ , dim R GL( R 1+s)/O(1, s) 5 1 2 1 s

2 2 5 10

one has coinciding dimensions for 4-dimensional spacetime and the scalar

product manifold for U > C 2

dim R $ 5 dim R GL( C n)/U(n) 5 n2 5 4

Consequently, the symmetric space D(2) can be used (Saller, 1997b) as a

model for the spacetime manifold

$ 5 D(2) 5 GL( C 2)/U(2) > exp R 4

With this interpretation, spacetime arises as the manifold of compact opera-

tions U(2) in general linear operations GL( C 2).

18 The complex quartet structure leads also to the fourfold concept `particle creation, particle
annihilation, antiparticle creation, and antiparticle annihilation.’
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The full linear group GL( C 2) is the direct product of its dilatation group

D(12) 5 12 exp R and its unimodular group UL(2),

GL( C 2) 5 D(12) 3 UL(2)

D(2) 5 GL( C 2)/U(2) > D(1) 3 SD(2)

The spacetime manifold D(2) involves as direct nonabelian factor the real
3-dimensional boost manifold

SD(2) 5 UL(2)/U(2) > SL( C 2)/SU(2) > SO+(1, 3)/SO(3)

The tangent spaces of the homogeneous space as the quotient of the corres-

ponding Lie algebras

log GL( C 2)/log U(2) > M > R 4

can be taken for the Minkowski translations carrying the irreducible SL( C 2)

representations [1 ) 1] of the adjoint group GL( C 2)/GL( C ) > SO+(1, 3). The

Cartan representation of the spacetime translations M by the U(2) hermitian

complex 2 3 2 matrices x 5 x* shows the local U(2) structure,

M > D(2) 5 exp M , R 4 > exp R 4

x 5 x* 5 1 x0 1 x3 x1 2 ix2

x1 1 ix2 x0 2 x3 2
d(x) 5 exp x 5 1 cosh ) -

x ) 1
-

s
-

x

) -
x ) sinh ) -

x ) 2 exp x0

5 1 d0(x) 1 d3(x) d1(x) 2 id2(x)

d1(x) 1 id2(x) d0(x) 2 d3(x) 2
In the special manifold factors SL0( R 4)/SO+(1, 3) (manifold of natural

orders) and SL( C 2)/SU(2) (manifold of conjugations), the orthogonal stability

group SO+(1, 3) has a signature (1, 3) invariant Lorentz form g on the

translations M > R 4, whereas the unitary group SU(2) has, in addition to an
invariant scalar product d on U > C 2, an invariant antisymmetric bilinear

form e (v, w) 5 2 e (w, v) (`spinor metric’ ). The C 2-volume form e is invariant

also with respect to SL( C 2); it leads to the bilinear symmetric orthochronous

SO+(1, 3)-forms g > e ^ e 2 1. No SL0( R 4)-invariant bilinear form exists on

the translations M .

7. SPACETIME AS BASIC FIELD QUANTIZATION

In analogy to the relativity tetrad h as basic representation of the real

10-dimensional metric manifold GL( R 4)/O(1, 3), a basic field c is introduced
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as fundamental representation for the real 4-dimensional manifold GL( C 2)/

U(2) of scalar products. It associates to each point of the real 4-dimensional

spacetime $ 5 D(2), parametrizable with d(x) 5 exp x for x P R 4, a
class representative

c : D(2) ® GL( C 2), d(x) > x j c (x)

With the basic field c , a complex vector space U (x) > C 2 at each spacetime

point can be related to a reference space. c *(x) gives an isomorphism between
the reference antispace U *(0) and the antispace U *(x),

c (x): U (x) ® U (0), c * 2 1(x): U *(x) ® U *(0)

with the scalar products

d(x)
( U 3 U )(x) Ð ® C

( c 3 c )(x) id D, d(x) 5 d(0) + ( c 3 c )(x)½ ½
¯ ¯

( U 3 U )(0) Ð ® C
d(0)

Bases are given with a , A 5 1, 2:

c (x) , c a
A(x) , c T(x), c * 2 1(x) , c *AÇ

b (x) 5 d a b c * a
A (x) d AAÇ , c * 2 1T(x)

d(0) , d a b

d(x) , dAB(x) 5 d b a c * a
A c b

B(x) > d AÇ
B(x) 5 dAB(x) d AAÇ 5 c *AÇ

b c b
B(x)

The basic fields c and c * transform under the two conjugated fundamental

complex 2-dimensional UL(2) representations (left- and right-handed Weyl

spinors), as usual denoted with undotted and dotted indices.

The GL( C 2)/U(2) analogue to the flat spacetime expansion in general

relativity GL( R 4)/O(1, 3) with the tetrad expansion h 5 14 1 . . . around a
reference O(1, 3) requires an expansion of the external group UL(2) around

a compact local reference group U(2). Such an expansion in the standard

model is performed by the transition from the operation group representing

fields for the dynamics to the tangent particle fields (in- and out-fields)

involving the dramatic symmetry reduction mentioned above and requires

the definition of a ground state and a reference system (spontaneous symme-
try breakdown).

By an expansion of the coset representative c in flat spacetime M >
R 4 with the standard model lepton fermion field l

c (x) 5 l(x) 1 . . . , c a
A(x) 5 l aA(x) 1 . . .

c *(x) 5 l*( 2 x) 1 . . . , c *AÇ
a (x) 5 l*AÇ

a ( 2 x) 1 . . .
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the spacetime defining scalar product can be related to the anticommutator

quantization condition19

log d(x) 5 { c *(x), c (x)} 5 {l*( 2 x), l(x)} 1 . . . 5 x e (x0) d 8(x2) 1 . . .

log d AÇ
B(x) 5 { c *AÇ

b (x), c b
B(x)} 5 {l*AÇ

a ( 2 x), l a
B(x)} 1 . . . 5 xAÇ

B e (x0) d 8(x2) 1 . . .

with

x 5 x* , x AÇ
B 5 ( s j )AÇ

B xj 5 1 x0 1 x3 x1 2 ix2

x1 1 ix2 x0 2 x3 2
With the canonically quantized flat-space standard model fields alone

a coset interpretation breaks down at this point. A quantization involving light-

cone-supported distributions does not allow an interpretation as a spacetime-

dependent scalar product d(x). Additional nonparticle contributions (Saller,
1997a,b) can lead to an expansion for the basic field quantization without

light-cone-supported distribution

log d(x) 5 { c *(x), c (x)} 5 x e (x0) q (x2) 1 . . .

The parametrization of the spacetime manifold D(2) is effected by the quanti-

zation of the basic field c .

8. THE SCALES FOR THE STANDARD MODEL

The representations of the scalar product manifold D(2) with real rank

2 as model for spacetime are characterized by two real invariants, an abelian

dilatation invariant M and a simple `boost’ -invariant m:

rank R GL( C 2)/U(2) 5 rank R D(1) 1 rank R SO+(1, 3)/SO(3) 5 2

d(x) > exp M 1 exp m 0

0 exp( 2 m) 2 5 c (M, m) 1 1 0

0 1 2 c *(M, m)

The two invariants, given in the Lie algebra structure by the abelian trace

and the simple `double trace’

19 For the left-handed part of the massive lepton particle field one has the anticommutato r

{l*(0), l(x)} 5 # d 4q

8 p 2 q e (q0) d (q2 2 M 2) exp iqx

5 x e (x0) F d 8(x2) 2
M 2

4
d (x2) 1

M 4

16
q (x2) 1 ? ? ? G
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c (M, m) 5 exp
M

2 1 e
m/2 0

0 e 2 m/2 2 ,

c (m) 5
c (M, m)

) ! det c (M, m) )
5 1 e

m/2 0

0 e 2 m/2 2
M 5 tr log c (M, m),

m2 5 2 tr log c (m) + log c (m)

can be used (Saller, 1997b) as fundamental mass scale M and fundamental

interaction range 1/m in the representations of the spacetime manifold

D(2) > D(1) 3 SD(2) by quantum fields.

9. HYPERISOPIN GAUGE FIELDS

The curvature in relativity 5: ( M ^ M T)(x) ® ( M ^ M T)(0) relates to

each other the Lorentz Lie algebras acting on the tangent spaces. The analogue

for the standard model considers the tensor product U ^ U * > C 4 for a
scalar product space U with the represented group U(2) and its Lie algebra.

The two real 4-dimensional subspaces { f 5 6 f * ) f P U ^ U *} of the

endomorphism U ^ U * > R 4 % i R 4 are both stable under the action of

U(2). The product representation of U(2) decomposes into a 3-dimensional

representation, faithful for the adjoint group SO(3) > U(2)/U(1), and a 1-

dimensional trivial one:

u P U(2): u ^ u: U ^ U * ® U ^ U *
u ^ u > id D% O 3(u) P {1} % SO(3)

U(2)-gauge fields & associate to each spacetime point an isomorphism
to a reference tensor space:

&(x): ( U ^ U *)(x) ® ( U ^ U *)(0)

&(x) 5 ( c ^ c *)(x) 5 !(x) % @(x)

&BÇ a
A b (x) 5 c a

A c *BÇ
b (x) 5 ( s j )BÇ

A[ d a
b !j (x) 1

-
t a

b
-

@ j (x)]

Therewith, the manifold of (1 % 3)-decomposable 4-dimensional isospin

SO(3) representations on the tensor product is considered in the orthochronous

Lorentz group SO+(1, 3) > UL(2)/U(1).

The hyperisospin U(2)-gauge fields of the standard model might be

taken as one term in the particle oriented flat spacetime approximation:

!j (x) 5 1±4 c a
A d b

a ( s j )
A
BÇ c *BÇ

b (x) 5 A j (x) 1 . . .

-
@ j (x) 5 1±4 c a

A

-
t b

a ( s j )
A
BÇ c *BÇ

b (x) 5
-

B j (x) 1 . . .
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In general, the standard model fields seem to be the particle-related and

ground-state-respecting contributions in a flat-spacetime expansion for the

more basic fields c , c * which parametrize the U(2) operations in UL(2) ,
GL( C 2) acting on the tensor powers of the vector spaces U , U *. This is done

for the basic space U with faithful hyperisospin U(2) action by the standard

lepton field c 5 l 1 . . . and for the tensor space U ^ U * with adjoint

isospin group U(2)/U(1) action by the standard hypercharge and isospin gauge

fields c ^ c * 5 A % B 1 . . . .

10. THE GRASSMANN ALGEBRA FOR SPACETIME

The local Grassmann algebra Ù M > R 16 over the translations at each

point of the spacetime manifold in relativity has as analogue the local

Grassmann algebra over U % U * > C 4 for the standard model. In contrast
to the translations M > R 4, the vector space U > C 2 does not arise as a

tangent space. The totally antisymmetric tensor powers Ù N ( U % U *) with

Grassmann degree N 5 0, 1, 2, 3, 4 carry all fundamental representations of

hyperisospin U(2) and its quotient groups U(1) and SO(3). Their direct sum

constitutes the complex Grassmann (exterior) algebra (Saller, 1993a,b) Ù
( U % U *) 5 GRASS > C 16 (Table X).

With the basic fermion field c the internal hyperisospin U(2) properties

of a reference Grassmann algebra for ( U % U *)(0) are considered in the

external Lorentz phase group UL(2) properties of a Grassmann algebra for

( U % U *)(x)

Ù ( c % c *)(x): GRASS(x) ® GRASS(0)

with isomorphism between corresponding vector subspaces with a corres-

ponding external and internal representation structure (Table XI).

Table X. U(2) and UL(2) Properties of the Grassmann Algebra GRASS

Faithfully Faithfully

Subspaces of represented represented

N Ù N( U % U *) > C (po
4
N) internal group external group

0 C {1} {1}

1 U , U * > C 2 U(2) UL(2)

2 U ^ U * > C 4 SO(3) SO+(1, 3)

U Ù U , U * Ù U * > C U(1) U(1)

3 U ^ U * Ù U * > C 2 U(2) UL(2)

U Ù U ^ U * > C 2

4 ( U Ù U ) ^ ( U Ù U )* > C {1} {1}
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Table XI. Quantum Numbers of the Basic Field Products

U(2) 5 U(12) + SU(2) UL(2) 5 U(12) + SL( C 2)

N Basic field [ y i 2T] [c i 2JL ) 2Jr]

0 id D [0 i 0] [0 i 0 ) 0]

1 c (x), c *(x) [ 2 1±
2 i 1], [ 1 1±

2 i 1] [ 1 1±
2 i 1 ) 0], [ 2 1±

2 i 0 ) 1]

2 ( c ^ c *)(x) [0 i 0] % [0 i 2] [0 i 1 ) 1]

( c Ù c )(x), ( c Ù c )*(x) [ 7 1 i 0] [ 6 1 i 0 ) 0]

3 ( c ^ c * Ù c *)(x) [ 1 1±2 i 1] [ 2 1±2 ) 1 i 0]

( c Ù c ^ c *)(x) [ 2 1±
2 i ] [ 1 1±

2 ) 0 i 1]

4 ( c Ù c ) ^ ( c Ù c )*(x) [0 i 0] [0 i 0 ) 0]

A basic field c , quantized with anticommutators, cannot imbed the U(1)

properties of U Ù U > C with Grassmann degree N 5 2, since the scalar
combination vanishes,

c Ù c (x): c a
A e AB e a b c

b
B(x) 5 1±2 e AB

e a b { c a
A(x), c

b
B(x)} 5 0

Only the combination leading to an SU(2)-triplet is nontrivial

c Ù c (x) , c a
A e AB -

t a b c
b
B(x),

-
t a b 5 e a g

-
t

g
b 5

-
t b a

Therewith one has to consider four types of nontrivial fieldsÐ two

fermionic fields with odd Grassmann degree 1 and 3 and two bosonic fields

with even Grassmann degree 2 and 4. Only N 5 1, 2, 3 characterize nontrivial

symmetric spaces and representations of the nonabelian boost manifold (con-

jugation manifold) UL(2)/U(2) (Table XII).

In addition to the D(1) grading with the natural number Grassmann
degree N P N , a Grassmann algebra over a self-dual complex space U %
U * > C 2n has a U(1) grading with z P Z 2n+1. The U(1) property defines the

hypercharge and chirality Z 5 grading with y, c 5 z/2 5 0, 6 1±2 , 6 1,

Table XII. UL(2)/U(2) Representations by Basic Field Products

N z/2 Basic field Manifold representation

1 7 1±
2

c (x), c *(x) UL(2)/U(2)

2 0 ( c ^ c *)(x) SO+(1, 3)/{1} % SO(3)

3 6 1±
2

( c ^ c * Ù c *)(x) UL(2)/U(2)

( c Ù c ^ c *)(x)

4 0 ( c Ù c ) ^ ( c Ù c )*(x) {1}
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GRASS 5 %
2

z 5 2 2

U (z), 5
U (0) 5 C % [ U ^ U *] % [ U Ù U ^ U * Ù U *] > C 6

U (1) 5 U * % [ U ^ U * Ù U *] > C 4

U ( 2 1) 5 U % [ U Ù U ^ U *] > C 4

U (2) 5 U * Ù U * > C
U ( 2 2) 5 U Ù U > C

A basic theory for the symmetric space GL( C 2)/U(2) has to use only

the field c in analogy to the tetrad h for minimal relativity GL( R 4)/O(1, 3).

The standard model is not basic in this sense. But at least the correspondence

between the relevant basic field products and the effective particle oriented

standard fields can be found.

11. EXTERNAL ± INTERNAL COSETS IN THE LEPTON MODEL

The `colorless’ standard model, i.e., without quark and gluon fields,

parametrizes all nontrivial external±internal or internal±external cosets, Gext /

Gint and G int Gext, respectively, which are possible with the UL(2) and U(2)

representations in the Grassmann algebra (Table XIII). One has to consider

the possibilities to embed into each other the nontrivial external groups
UL(2), U(1), and SO+(1, 3) and the nontrivial internal groups U(2), U(1),

and SO(3)Ð in both directions.

Internal U(2) can be embedded only in external UL(2), done by the

lepton isodoublet fields, as the flat space contribution for the basic fields c , c *

UL(2)/U(2): H l(x): U (x) ® U (0), l(x) , l aA(x)

l*(x): U *(x) ® U *(0), l*(x) , l*AÇ
a (x)

Internal SO(3) can be embedded only in external SO+(1, 3), done by

the gauge fields, corresponding to the basic field c ^ c *,

SO+(1, 3)/{1} % SO(3): A(x) % B(x): ( U ^ U *)(x) ® ( U ^ U *)(0)

A(x) % B(x) , A j (x) 1
-

B j (x)

Table XIII

UL(2) U(1) SO+(1, 3)

U(2) l H 3
U(1) e Ð 3

{1} % SO(3) 3 3 A % B
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The embedding of external U(1) in internal U(1) is trivial, U(1)/U(1)

> {1}.

Internal U(2) can imbed only external U(1), done by the Higgs isodou-
blet fields

U(2)/U(1): H H(x): ( U Ù U )(x) ® U (0), H(x) , H a (x)

H*(x): ( U Ù U )*(x) ® U *(0), <qlH*(x) , H*a (x)

Internal U(1) can be embedded only in external UL(2), done by the

lepton isosinglet fields

UL(2)/U(1): H e(x): U *(x) ® ( U Ù U )(0), e(x) , eAÇ (x)

e*(x): U (x) ® ( U Ù U )*(0), e*(x) , e*A(x)

The fields in the diagonal, the 2 3 2 lepton fields l (isodoublet Lorentz
doublet), and the 4 3 4 gauge fields A % B [U(2)-quartet Lorentz vector]

connect spaces with equal dimensions.

The pair (H, e) in the skew-diagonal with the 2 3 1 Higgs fields H
(isodoublet Lorentz scalar) and the 1 3 2 lepton fields e (isosinglet Lorentz

doublet) come together as a `doublet property swapping pair,’

[ y i 2T ] + [c i 2JL ) 2JR] 5 5
[1 i 0] + [ 2 3±2 i 1 ) 0] for e*

[ 2 1±2 i 1] + [1 i 0 ) 0] for H

[1±2 i 1] + [ 2 1±2 i 1 ) 0] for e* ^ H

The internal SU(2) for the Higgs Lorentz singlet field H corresponds to the

external SU(2) , SL( C 2) for the lepton isosinglet

U(1) 3 UL(2)

U(2) 3 U(1)
> UL(2)/U(2)

The SU(2)-swapping pair can arise from the isomorphisms for the tensors

of Grassmann degree 3,

x (x): ( U ^ U * Ù U *)(x) ® ( U ^ U * Ù U *)(0)

x (x) 5 ( c ^ c * Ù c *)(x) , x a
A(x) 5 c b

A

-
t a

b c *CÇ
g e CÇ DÇ

-
t g d c *DÇ

d (x)

as a particle oriented twofold factorization in the flat spacetime expansion

( c ^ c * Ù c *)(x) 5 (e* ^ H)(x) 1 . . . ,

x a
A(x) 5 e ABe*BH a (x) 1 . . .

( c Ù c ^ c *)(x) 5 (H* ^ e)(x) 1 . . . ,

x *AÇ
a (x) 5 e AÇ BÇ H*a eBÇ (x) 1 . . .
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12. QUARK FIELDS AS GRASSMANN ROOTS

The main problem for an interpretation of the standard model in the

framework of a basic GL( C 2)/U(2) coset structure are the colored fields,

the quark fields q, d, u, and the gluon fields G. The only natural relation

of U(2 3 3) to U(2) seems to arise in the Grassmann algebra GRASS
> C 16 over U % U * > C 4, which gives rise to two types of faithful

U(2) representations with Grassmann degrees N 5 1 and N 5 3, which
may reflect color singlet and color triplet properties, respectively. In

analogy to the representation of U ^ ( U Ù U )* with the Higgs lepton

two-factor product e* ^ H, the quarks may arise from a parametrization

with a three-factor product,

U ^ U * Ù U *: H U(2) ^ U(2)) Ù U(2) > U(2) ^ U(1) > U(2)

UL(2) ^ UL(2)) Ù UL(2) > UL(2) ^ U(1) > UL(2)

taking care of the GL( C ) 5 D(1) 3 U(1) properties given by the two gradings

of the Grassmann algebra.
Originally, the quarks were introduced as `cubic foot’ representations

of the nucleons with color SU(3) as gauge group for the strong interactions.

As seen in the standard model central correlation I (3) > SU(3) ù U(13)

(Section 4), a color SU(3) property with nontrivial triality (Baird and

Bieden-

harn, 1964), i.e., an SU(3) representation [C1, C2] with C1 2 C2 Þ 3 Z ,
e.g., triplets [1, 0] or sextets [2, 0], not, however, octets [1, 1] or decuplets

[3, 0], cannot be separated from a third integer hypercharge U(1) property.

The U(3) hypercharge color group can be considered to be the continuous

phase generalization of the discrete cyclotomic root exp(2 p i/3) P I (3) or, in

general for U(N ) with centr U(N ) > I (N ),

k 5 1, . . . , N:

5
exp

2 p ik

N
5 F exp

2 p i

N G
k

with F exp
2 p ik

N G
N

5 1

`
k

U(N ) 5 H `
k

u ) u P U(N ) J with `
N F `

k

U(N ) G > U(1)

Any root exp(2 p ik/N ) P I (N ) as power of the cyclic root exp(2 p i/N ) has

its correspondence in the group which is defined by the U(N ) representation

Ù kU(N ) on a complex (N
k )-dimensional space as kth Grassmann power of the

cyclic defining representation with k 5 1,
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I (N ) 5 !
N

1 5 H exp
2 p ik

N Z k 5 1, . . . , N J
!
N

U(1) 5 H `
k

U(N ) ) k 5 1, . . . , N J , with U(N ) >
U(1) 3 SU(N )

I(N )

Table XIV shows examples the second, third, and sixth Grassmann roots
of U(1).

With Grassmann powers one can define the Nth Grassmann root of U(n)

for relatively prime20 naturals (n, N ), e.g., for the standard model isospin-

color relevant pair (n, N ) 5 (2, 3),

!
N

U(n) 5 H `
k

U(n 3 N ) ) k 5 1, . . . , N J
with U(n 3 N ) 5

U(1) 3 SU(n) 3 SU(N )

I(n) 3 I(N )

The root allows the distribution of the U(1) phase in U(n) on k # N factors,

as shown, e.g., for (n, N ) 5 (2, 3) in Table XV.

Table XIV

k 1 2

e2 p i/2 e2 p i/1

!
2

1

U(2) U(1)
!
2

U(1)

k 1 2 3

e2 p i/3 e 2 2 p i/3 e2 p i/1

!
3

1

U(3) U(3) U(1)
!
3

U(1)

k 1 2 3 4 5 6

e2 p i/6 e2 p i/3 e2 p i/2 e 2 2 p i/3 e 2 2 p i/6 e2 p i/1

!
6

1

U(6) U(6)/I(2) U(6)/I(3) U(6)/I(2) U(6) U(1)
!
6

U(1)

20 The Grassmann root of U(1) for any natural number m 5 1, 2, . . . is obtained by using its
Sylow decomposition m 5 pk1

1 ? ? ? pkr
r in powers of primes

!
m

U(1) 5 p
k2

2 ! p
k2
2 ! ? ? ? p

kr
r ! U(1) 5 U( pk1

1 3 ? ? ? 3 pkr
r ) 5

U(1) 3 SU( pk1
1 ) 3 ? ? ? 3 SU( pkr

r )

I ( pk1
1 ) 3 ? ? ? 3 I ( pkr

r )
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Table XV

k 1 2 3

exp( 6 2 p i/6) exp( 6 2 p i/3) exp(2 p i/2)!
3

!
2

1

1abU(3)

!
3

U(2) U(2 3 3) U(2)

The quark fields as cubic Grassmann roots take care of the basic field

products with Grassmann degree N 5 3 in U ^ U * Ù U *, U Ù U ^ U * >
C 2. The quark isodoublet field q parametrizes the k 5 1 member of the

internal U(2) roots !
3

U(2) with U(2 3 3) degrees of freedom, the two quark

isosinglets d, u parametrize the k 5 2 member of !
3

U(2) with U(3) degrees

of freedom

!
3

c ^ c * Ù c * 5 5
q 1 . . . , k 5 1

q Ù q % d Ù u 1 . . . , k 5 2

q Ù q Ù q % q Ù d Ù u 1 . . . , k 5 3

, 5
q a c

A 1 . . .

e c1c2c3 e a 2 a 3(q
a 2c2
A2 e A2A3q a 3c3

A3 1 d a 2c2
AÇ 2 e AÇ 2AÇ 3u a 3c3

AÇ 3 ) 1 . . .

e c1c2c3 e a 2 a 3q
a c1
A (q a 2c2

A2 e A2A3q a 3c3
A3 1 d a 2c2

AÇ 2 e AÇ 2AÇ 3u a 3c3
AÇ 3 ) 1 . . .

which is written with the representations

!
3

[1±2 i 1] 5 5
[1±6 i 1; 1, 0], k 5 1

[1±3 i 0; 0, 1], k 5 2, 1±3 5 1±6 1 1±6 5 2±3 2 1±3
[1±2 i 1; 0, 0], k 5 3

If, for an effective linearization of the basic GL( C 2)/U(2) coset structure

as realized with the Grassmann algebra GRASS > C 16, the basic internal

operation group U(2) is extended by a cubic Grassmann root to U(2 3 3),

one has to provide also for a gauge field for the additional local U(2 3 3)/

U(2) > SU(3)/ I (3) operations. This is done in the standard model with the

gluon fields G(x).
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